Categorías
Sin categoría

CAPITULO 12: «Interpretación electrocardiográfica de las anomalías del músculo cardíaco y el flujo sanguíneo coronario: el análisis vectorial.»

Resultado de imagen para electrocardiogramas GIF

Principios del análisis vectorial de electrocardiogramas
Uso de vectores para representar potenciales eléctricos
Para comprender cómo las alteraciones cardíacas afectan a los contornos del ECG, primero hay que estar familiarizado con el concepto de vectores y análisis vectorial, tal y como se aplica a los potenciales eléctricos del interior del corazón y de alrededor del corazón.

Vector «resultante» en el corazón en cualquier momento, la despolarización del tabique ventricular y de partes de las paredes endocárdicas apicales de los dos ventrículos. En el momento de la excitación cardíaca la corriente eléctrica fluye entre las zonas despolarizadas del interior del corazón y las zonas no despolarizadas del exterior del corazón, como lo indican las flechas elípticas largas. También fluye algo de corriente en el interior de las cavidades cardíacas directamente desde las zonas despolarizadas hacia las zonas que todavía están polarizadas. En conjunto, fluye una cantidad mucho mayor de corriente hacia abajo desde la base de los ventrículos, hacia la punta, que en dirección ascendente. Por tanto, el vector sumado del potencial generado en este momento particular, denominado vector medio instantáneo, está representado por la flecha negra larga que se traza a través del centro de los ventrículos en una dirección que va desde la base hacia la punta.

Resultado de imagen para vector medio a traves de ventriculos

La dirección de un vector se indica en grados Cuando un vector es exactamente horizontal y se dirige hacia el lado izquierdo de la persona se dice que el vector se extiende en la dirección de 0°.
A partir de este punto de referencia cero la escala de los vectores rota en el sentido de las agujas del reloj: cuando el vector se extiende desde arriba y recto hacia abajo tiene una dirección de +90°, cuando se extiende desde la izquierda hacia la derecha de la persona tiene una dirección de +180° y cuando se extiende directamente hacia arriba tiene una dirección de –90° (o +270°).

Resultado de imagen para vector medio a traves de ventriculos
Resultado de imagen para vector medio a traves de ventriculos


Cada derivación es realmente un par de electrodos conectados al cuerpo en lados opuestos del corazón, y la dirección desde el electrodo negativo al electrodo positivo
se denomina «eje» de la derivación. La derivación I se registra a partir de dos electrodos colocados respectivamente en los brazos. Como los electrodos están exactamente en la dirección horizontal, con el electrodo positivo hacia la izquierda, el eje de la derivación I es de 0°. Cuando se registra la derivación II, los electrodos se colocan en el brazo derecho y en la pierna izquierda. El brazo derecho se conecta al torso en el vértice superior derecho y la pierna izquierda se conecta en el vértice inferior izquierdo. Por tanto, la dirección de este electrodo es de aproximadamente +60°. Mediante un análisis similar se puede ver que la derivación III tiene un eje de aproximadamente +120°, la derivación aVR de +210°, aVF de +90° y aVL de –30°.

Eje eléctrico medio del complejo QRS ventricular y su significado
El vectocardiograma durante la despolarización ventricular (el vectocardiograma QRS). A partir de este vectocardiograma se puede ver que la dirección preponderante de los vectores de los ventrículos durante la despolarización se dirige principalmente hacia la punta del corazón. Es decir, durante la mayor parte del ciclo de despolarización ventricular la dirección del potencial eléctrico (de negativo a positivo) se dirige desde la base de los ventrículos hacia la punta. Esta dirección preponderante del potencial durante la despolarización se denomina eje eléctrico medio de los ventrículos. El eje eléctrico medio de los ventrículos normales es de 59°. En muchas situaciones patológicas del corazón esta dirección cambia mucho, a veces incluso a polos opuestos del corazón.

Resultado de imagen para vectocardiograma
Resultado de imagen para vectocardiograma

Si el potencial neto de la derivación I es positivo se representa en la dirección positiva a lo largo de la línea que representa la derivación I. Por el contrario, si este potencial es negativo se representa en la dirección negativa. También para la derivación III se coloca el potencial neto con su base en el punto de intersección y, si es positivo, se representa en la dirección positiva a lo largo de la línea que representa la derivación III. Si es negativo se representa en la dirección negativa. Para determinar el vector del potencial eléctrico medio del complejo QRS ventricular se trazan líneas perpendiculares (las líneas discontinuas de la figura) desde las puntas de las derivaciones I y III, respectivamente. El punto de intersección de estas dos líneas perpendiculares representa, mediante análisis vectorial, el vértice del vector QRS medio de los ventrículos, y el punto de intersección de los ejes de las derivaciones I y III representa el extremo negativo del vector medio. Por tanto, se traza el vector QRS medio entre estos dos puntos. El potencial medio aproximado que generan los ventrículos durante la despolarización se representa por la longitud de este vector QRS medio, y el eje eléctrico medio se representa por la dirección del vector medio.

Situaciones ventriculares anómalas que provocan una desviación del eje
Aunque el eje eléctrico medio de los ventrículos es en promedio de aproximadamente 59°, este eje puede desplazarse incluso en un corazón normal desde aproximadamente 20 hasta aproximadamente
100°. Las causas de las variaciones normales son principalmente diferencias anatómicas del sistema de distribución de Purkinje o de la propia musculatura de corazones diferentes. Sin embargo, diversas situaciones anómalas del corazón pueden producir una desviación del eje más allá de los límites normales, como se señala a continuación. Alteraciones de la posición del corazón en el tórax
Si el corazón está angulado hacia la izquierda, el eje eléctrico medio del corazón también se desplaza hacia la izquierda. Este desplazamiento se produce:
1) al final de una espiración profunda
2) cuando una persona se agacha, porque el contenido abdominal comprime el diafragma hacia arriba
3) con bastante frecuencia en personas obesas, cuyos diafragmas comprimen hacia arriba el corazón todo el tiempo como consecuencia del aumento de la adiposidad visceral. De la misma manera, la angulación del corazón hacia la derecha hace que el eje eléctrico medio de los ventrículos se desplace hacia la derecha. Este desplazamiento ocurre:
1) al final de una inspiración profunda
2) cuando una persona está de pie
3) normalmente en personas altas y de hábito asténico, cuyos corazones cuelgan hacia abajo.
Hipertrofia de un ventrículo
Cuando un ventrículo se hipertrofia mucho, el eje del corazón se desplaza hacia el ventrículo hipertrofiado por dos motivos.
Primero, hay una cantidad mayor de músculo en el lado hipertrofiado del corazón que en el otro lado, lo que permite la generación de un mayor potencial eléctrico en ese lado.
Segundo, es necesario más tiempo para que la onda de despolarización viaje a través del ventrículo hipertrofiado que a través del ventrículo normal. En consecuencia, el ventrículo normal se despolariza mucho antes que el ventrículo hipertrofiado, y esta situación hace que haya un vector intenso desde el lado normal del corazón hacia el lado hipertrofiado, que sigue teniendo una carga intensamente positiva. Así, el eje se desvía hacia el ventrículo hipertrofiado.
Análisis vectorial de la desviación del eje hacia la izquierda debida a hipertrofia del ventrículo izquierdo
. El análisis vectorial muestra una desviación del eje hacia la izquierda con un eje eléctrico medio que señala hacia –15°. Este es un ECG típico producido por el aumento de la masa muscular del ventrículo izquierdo. En este caso la desviación del eje estaba producida por hipertensión (elevación de la presión arterial), que hizo que el ventrículo izquierdo se hipertrofiara para poder bombear sangre contra la presión arterial sistémica elevada. Se produce un cuadro similar de desviación del eje hacia la izquierda cuando hay hipertrofia del ventrículo izquierdo como consecuencia de estenosis valvular aórtica, insuficiencia valvular aórtica o cualquiera de las distintas cardiopatías congénitas en las que el ventrículo izquierdo aumenta de tamaño mientras el ventrículo derecho mantiene un tamaño relativamente normal.

Resultado de imagen para analisis vectorial del electrocardiograma normal
Resultado de imagen para analisis vectorial del electrocardiograma normal

El bloqueo de una rama del haz produce desviación del eje
Habitualmente las paredes laterales de los dos ventrículos se despolarizan casi en el mismo instante porque las ramas izquierda y derecha del haz del sistema de Purkinje transmiten el impulso cardíaco a las dos paredes ventriculares de manera casi simultánea. En consecuencia, los potenciales que generan los dos ventrículos (en los dos lados opuestos del corazón) casi se neutralizan entre sí. Sin embargo, si solo está bloqueada una de las ramas principales del haz, el impulso cardíaco se propaga a través del ventrículo normal mucho antes de hacerlo a través del otro. Por tanto, la despolarización de los dos ventrículos no se produce al mismo tiempo ni siquiera de manera aproximada, y los potenciales de despolarización no se neutralizan entre sí. En consecuencia, se produce desviación del eje como se señala a continuación.
Análisis vectorial de la desviación del eje hacia la izquierda en el bloqueo de la rama izquierda del haz
Cuando hay un bloqueo de la rama izquierda del haz, la despolarización cardíaca se propaga a través del ventrículo derecho de dos a tres veces más rápidamente que a través del ventrículo izquierdo. En consecuencia, buena parte del ventrículo izquierdo permanece polarizada durante hasta 0,1 s después de que se haya despolarizado totalmente el ventrículo derecho. Así, el ventrículo derecho se hace electronegativo, mientras que el ventrículo derecho sigue siendo electropositivo durante la mayor parte del proceso de despolarización, ya que se proyecta un vector intenso desde el ventrículo derecho hacia el ventrículo izquierdo.

Disminución del voltaje producida por miopatías cardíacas
Una de las causas más frecuentes de disminución del voltaje del complejo QRS es una serie de infartos arteriales miocárdicos antiguos, con la consiguiente disminución de masa muscular. Esta dolencia también hace que la onda de despolarización se desplace lentamente a través de los ventrículos e impide que porciones importantes del corazón se despolaricen masivamente de manera simultánea. Por tanto, esta situación hace que haya cierta prolongación del complejo QRS junto a la disminución del voltaje.
Disminución del voltaje provocada por situaciones que se producen en las estructuras que rodean al corazón
Una de las causas más importantes de disminución del voltaje en las derivaciones electrocardiográficas es la presencia de líquido en el pericardio. Como el líquido extracelular conduce las corrientes eléctricas con gran facilidad, una gran parte de la electricidad que fluye desde el corazón es conducida desde una parte del corazón a otra a través del líquido pericárdico. Así, este líquido «cortocircuita» de manera eficaz los potenciales eléctricos que genera el corazón, reduciendo los voltajes electrocardiográficos que alcanzan las superficies externas del cuerpo. El derrame pleural, en menor grado, también puede «cortocircuitar» la electricidad que rodea el corazón, de modo que los voltajes de la superficie del cuerpo y de los ECG están disminuidos

Resultado de imagen para electrocardiograma de bajo voltaje

Patrones prolongados y extraños del complejo QRS
La hipertrofia y la dilatación cardíacas prolongan el complejo QRS
El complejo QRS dura mientras siga propagándose la despolarización a través de los ventrículos, es decir, mientras se despolariza parte de los ventrículos y parte sigue polarizada. Por tanto, la prolongación de la conducción del impulso a través de los ventrículos produce prolongación del complejo QRS. Con frecuencia se produce esta prolongación cuando uno o los dos ventrículos están hipertrofiados o dilatados, debido al trayecto más largo que debe recorrer el impulso. El complejo QRS normal dura de 0,06 a 0,08 s, mientras que en la hipertrofia o dilatación del ventrículo izquierdo o derecho el complejo QRS puede prolongarse hasta 0,09 a 0,12 s.
El bloqueo del sistema de Purkinje prolonga el complejo QRS Cuando están bloqueadas las fibras de Purkinje, el impulso cardíaco se debe conducir por el músculo ventricular en lugar de por el sistema de Purkinje. Esta acción reduce la velocidad de conducción del impulso a aproximadamente la tercera parte de lo normal. Por tanto, si se produce el bloqueo completo de una de las ramas del haz, la duración del complejo QRS habitualmente aumenta a 0,14 s o más.

Corriente de lesión
Muchas alteraciones cardíacas distintas, especialmente las que lesionan al propio músculo cardíaco, con frecuencia hacen que parte del corazón siga despolarizado parcial o totalmente todo el tiempo. Cuando se produce esta situación la corriente fluye entre las zonas despolarizadas de manera patológica y las zonas polarizadas de manera normal incluso entre dos latidos. Este fenómeno se denomina corriente de lesión. Obsérvese especialmente que la parte lesionada del corazón es negativa, porque esta es la parte que está despolarizada y emite cargas negativas hacia los líquidos circundantes, mientras que el resto del corazón es neutro o tiene una polaridad positiva. Algunas alteraciones que pueden producir corriente de lesión son: 1) traumatismo mecánico, que a veces hace que las membranas siguen siendo tan permeables que no se puede producir la repolarización completa; 2) procesos infecciosos que lesionan las membranas musculares, y 3) isquemia de zonas locales de músculo cardíaco producida por oclusiones coronarias locales, que es con mucho la causa más frecuente de corriente de lesión en el corazón. Durante la isquemia el músculo cardíaco no dispone de un aporte suficiente de nutrientes desde la vascularización coronaria para mantener la polarización normal de las membranas.

Resultado de imagen para corriente de lesion electrocardiograma

El «punto J» es el potencial de referencia cero para analizar la corriente de lesión Se podría pensar que las máquinas de ECG podrían determinar cuándo no hay flujo de corriente alrededor del corazón. Sin embargo, en el cuerpo hay muchas corrientes parásitas, como las corrientes que se deben a «potenciales cutáneos» y a diferencias de concentraciones iónicas de los diferentes líquidos del cuerpo. Por tanto, cuando se conectan dos electrodos entre los brazos o entre un brazo y una pierna, estas corrientes parásitas hacen que sea imposible predeterminar el nivel exacto de referencia cero del ECG.
Después, para el análisis del eje eléctrico del potencial de lesión que produce una corriente de lesión, se traza una línea horizontal en todas las derivaciones del ECG en el nivel del punto J. Esta línea horizontal es entonces el nivel de potencial cero del ECG a partir del cual se deben medir todos los potenciales que producen las corrientes de lesión, el punto J de cada uno de estos dos ECG no está en la misma línea que el segmento T-P. En la figura se ha trazado una línea horizontal a través del punto J para representar el nivel de voltaje cero en cada uno de los dos registros. El potencial de lesión de cada una de las derivaciones es la diferencia entre el voltaje del ECG inmediatamente antes del inicio de la onda P y el nivel de voltaje cero que se determina a partir del punto J. En la derivación I el voltaje registrado del potencial de lesión está por encima del nivel de potencial cero y es, por tanto, positivo. Por el contrario, en la derivación III el potencial de lesión está debajo del nivel de voltaje cero y, por tanto, es negativo.

Resultado de imagen para derivacion del punto j

Deja un comentario

Diseña un sitio como este con WordPress.com
Comenzar