Distensibilidad vascular
Una característica muy importante del aparato vascular es que todos los vasos sanguíneos son distensibles. La naturaleza distensible de las arterias las permite acomodarse al gasto pulsátil del corazón y superar las pulsaciones de la presión. Esta capacidad proporciona un flujo de sangre continuo y homogéneo a través de los vasos sanguíneos muy pequeños de los tejidos. Con diferencia, los vasos más distensibles del cuerpo son las venas, capaces de almacenar 0,5-1 l de sangre extra con incrementos incluso leves de la presión venosa. Por tanto, las venas ejercen de reservorio para almacenar grandes cantidades de sangre extra que puede utilizarse siempre que se requiera en cualquier otro punto de la circulación
.
Unidades de distensibilidad vasculaR
La distensibilidad vascular se expresa como el incremento fraccionado del volumen por cada milímetro de mercurio que aumenta la presión, según la fórmula:
Las venas son mucho más distensibles que las arterias
Las paredes de las arterias son más gruesas y bastante más fuertes que las de las venas, por lo que, como media, las venas son unas ocho veces más distensibles que las arterias. Es decir, un incremento dado de la presión provoca un incremento de sangre ocho veces mayor en una vena que en una arteria de tamaño comparable. En la circulación pulmonar, la distensibilidad de la vena pulmonar es similar a la de la circulación sistémica. Sin embargo, las arterias pulmonares normalmente actúan con presiones que son aproximadamente la sexta parte de las que funcionan en el sistema arterial sistémico y su distensibilidad es, por tanto, unas seis veces mayor que la de las arterias sistémicas.

Compliancia vascular (o capacitancia vascular)
En los estudios hemodinámicos es mucho más importante conocer la cantidad total de sangre que se puede almacenar en una porción dada de la circulación por cada milímetro de mercurio que aumente la presión que conocer la distensibilidad de cada vaso en particular. Este valor se conoce como compliancia o capacitancia del lecho vascular respectivo.
Compliancia y distensibilidad son dos conceptos muy diferentes. Un vaso muy distensible que tiene un volumen pequeño puede tener una compliancia mucho menor que un vaso mucho menos distensible que tenga un volumen grande, porque compliancia es igual a distensibilidad por volumen. La compliancia de una vena sistémica es 24 veces mayor que la de su arteria correspondiente porque es 8 veces más distensible y tiene un volumen 3 veces mayor (8 × 3 = 24).
Compliancia diferida (relajación por estrés) de los vasos
El término «compliancia diferida» se refiere al hecho de que un vaso expuesto a un aumento de volumen primero muestra un gran incremento de la presión, pero progresivamente se va produciendo un estiramiento diferido del músculo liso en la pared de los vasos que permite que la presión vuelva a la normalidad en un período de minutos u horas.


Pulsaciones de la presión arterial
Una oleada de sangre llena las arterias con cada latido cardíaco. Si no fuera por la distensibilidad del sistema arterial, toda esta sangre nueva tendría que fluir a través de los vasos sanguíneos periféricos casi instantáneamente, solo en la sístole cardíaca, y no se produciría flujo durante la diástole. No obstante, la compliancia del árbol arterial reduce las pulsaciones de la presión hasta que prácticamente desaparecen en el momento en que la sangre alcanza los capilares, por lo que el flujo sanguíneo tisular es principalmente continuo con un escaso carácter pulsátil.

Perfiles anormales de la presión de pulso.
Algunas situaciones fisiopatológicas de la circulación provocan perfiles anormales de la onda de pulso de presión, además de alterar la presión de pulso.
En personas con estenosis valvular aórtica el diámetro de apertura de esta válvula está significativamente reducido y la presión de pulso aórtica disminuye también significativamente porque disminuye el flujo sanguíneo que sale por la válvula estenótica. En personas con conducto arterioso permeable, la mitad o más de la sangre que bombea el ventrículo izquierdo hacia la aorta fluye inmediatamente hacia atrás a través del conducto muy abierto hacia la arteria pulmonar y los vasos sanguíneos pulmonares, con lo que se produce un gran descenso de la presión diastólica antes del siguiente latido cardíaco. En casos de insuficiencia aórtica esta válvula está ausente o no se cierra por completo, por lo que después de cada latido la sangre que se acaba de bombear hacia la aorta fluye inmediatamente hacia atrás, hacia el ventrículo izquierdo. En consecuencia, la presión aórtica cae hasta cero entre los latidos y además no se produce la escotadura del perfil del pulso aórtico, porque no hay ninguna válvula aórtica que cerrar.
Transmisión de los pulsos de presión hacia las arterias periféricas
Cuando el corazón expulsa la sangre hacia la aorta durante la sístole, primero se distiende solo la porción proximal de la aorta porque la inercia de la sangre impide el movimiento brusco de la sangre hacia la periferia.
Etapas progresivas de la transmisión del impulso de presión a lo largo de la aorta.
La velocidad de la transmisión del pulso de la presión en la aorta normal es de 3 a 5 m/s, de 7 a 10 m/s en las ramas arteriales grandes y de 15 a 35 m/s en las pequeñas arterias. En general, cuanto mayor sea la compliancia de cada segmento vascular, más lenta será la velocidad, lo que explica la transmisión lenta en la aorta y mucho más rápida en las arterias distales pequeñas, mucho menos distensibles. En la aorta, la velocidad de transmisión del impulso de la presión es 15 veces mayor, o más, que la velocidad del flujo sanguíneo porque el impulso de la presión simplemente es una onda de
presión que se desplaza con un escaso movimiento anterógrado del volumen de sangre total.

Los pulsos de presión se amortiguan en las arterias más pequeñas, arteriolas y capilares.
Esta disminución progresiva de las pulsaciones en la periferia es lo que se conoce como amortiguación de los pulsos de presión. El origen de esta amortiguación es doble: 1) la resistencia al movimiento de la sangre en los vasos, y 2) la compliancia de estos. La resistencia amortigua las pulsaciones porque debe haber una pequeña cantidad del flujo sanguíneo anterógrado en el frente de la
onda de pulso para distender el siguiente segmento del vaso; cuanto mayor sea la resistencia, más difícil es que suceda. La compliancia amortigua las pulsaciones porque, cuanto más distensible sea el vaso, mayor cantidad de sangre se necesita en el frente de la onda de pulso para provocar el aumento de la presión. Por tanto, el grado de amortiguación es casi directamente proporcional al producto resistencia por compliancia.

Presión arterial media
La presión arterial media es la media de las presiones arteriales medidas milisegundo a milisegundo en un período de tiempo y no es igual a la media de las presiones sistólica y diastólica, porque, para frecuencias cardíacas normales, se invierte una mayor fracción del ciclo cardíaco en la diástole que en la sístole; así pues, la presión arterial sigue estando más cercana a la presión diastólica que a la presión sistólica durante la mayor parte del ciclo cardíaco. Por tanto, la presión arterial media está determinada en un 60% por la presión diastólica y en un 40% por la presión sistólica.

Presiones venosas: presión en la aurícula derecha (presión venosa central) y presiones venosas periféricas
Para entender las distintas funciones de las venas, primero es necesario conocer algo sobre la presión en su interior y sobre los factores que la determinan. La sangre de todas las venas sistémicas fluye hacia la aurícula derecha del corazón, por lo que la presión del interior de esta cámara se denomina presión venosa central.
La presión normal en la aurícula derecha es de 0 mmHg, que es igual a la presión atmosférica en todo el organismo. Puede aumentar hasta 20 o 30 mmHg en condiciones muy anormales como: 1) insuficiencia cardíaca grave, o 2) después de una transfusión masiva de sangre, lo que aumenta en gran medida el volumen total de sangre y hace que cantidades excesivas de sangre intenten llegar al corazón desde los vasos periféricos. El límite inferior de la presión en la aurícula derecha es de –3 a –5 mmHg, por debajo de la presión atmosférica. Esta también es la presión en la cavidad torácica alrededor del corazón. La presión en la aurícula derecha se acerca a estos dos valores cuando el corazón bombea con un vigor excepcional o cuando hay un gran descenso del flujo sanguíneo que entra en el corazón desde los vasos periféricos, como sucede después de una hemorragia grave.
Resistencia venosa y presión venosa periférica
Las venas grandes ejercen tan poca resistencia al flujo sanguíneo cuando están distendidas que la resistencia es casi cero, y prácticamente no tiene importancia.
Reservorios sanguíneos específicos
Algunas porciones del sistema circulatorio también son tan extensas o distensibles que se conocen como «reservorios sanguíneos específicos». Estos reservorios incluyen: 1) el bazo, cuyo tamaño a veces disminuye tanto como para liberar hasta 100 ml de sangre hacia otras áreas de la circulación; 2) el hígado, cuyos senos liberan varios cientos de mililitros de sangre hacia el resto de la circulación; 3) las venas abdominales grandes, que contribuyen hasta con 300 ml, y 4) los plexos venosos situados bajo la piel, que pueden contribuir también con varios cientos de mililitros. El corazón y los pulmones, aunque no forman parte del sistema de reservorio venoso sistémico, también pueden considerarse reservorios sanguíneos. Por ejemplo, el corazón disminuye de volumen durante la estimulación sistémica y, de este modo, contribuye con unos 50-100 ml de sangre, mientras que los pulmones contribuyen con otros 100-200 ml cuando las presiones pulmonares disminuyen hasta valores bajos.
El bazo como reservorio para almacenar eritrocitos
El bazo tiene dos áreas independientes para almacenar la sangre: los senos venosos y la pulpa. Los senos pueden ingurgitarse igual que cualquier otra parte del sistema venoso y almacenar sangre total.

