Categorías
Sin categoría

CAPITULO 19: Función dominante de los riñones en el control a largo plazo de la presión arterial y en la hipertensión: el sistema integrado de regulación de la presión arterial

Función Dominante de los Riñones en el Control a Largo Plazo by ...

El sistema de líquidos renal-corporal para el control de la presión arterial actúa de forma lenta, pero muy poderosa, del modo siguiente: si el volumen de sangre aumenta y la capacitancia vascular no se ve alterada, la presión arterial también aumenta. A su vez, el aumento de la presión hace que los riñones excreten el exceso de volumen, con lo que la presión se normaliza. En la historia filogenética del desarrollo animal este sistema de líquidos renal-corporal de control de la presión es uno de los más primitivos y solo se encuentra totalmente operativo en uno de los vertebrados inferiores, el pez babosa. Este animal tiene una presión arterial baja, tan solo de 814 mmHg, y esta presión aumenta casi directamente en proporción a su volumen de sangre. El pez babosa bebe continuamente agua de mar, que se absorbe hacia la sangre y aumenta su volumen y también la presión. No obstante, cuando esta aumenta demasiado, el riñón excreta simplemente el exceso de volumen hacia la orina y alivia la presión sanguínea. Cuando la presión es baja, el riñón excreta menos líquido del que ingiere. Como el pez babosa continúa bebiendo, el volumen de líquido extracelular, el volumen de sangre y la presión vuelven a aumentar. Este mecanismo de control primitivo de la presión ha sobrevivido en todas las épocas casi tal como funciona en el pez babosa; en el ser humano la eliminación renal de agua y sal es tan sensible, si no más, a los cambios de presión como en el pez babosa. En realidad, el aumento de la presión arterial de solo unos milímetros de mercurio en el ser humano puede aumentar al doble la eliminación renal de agua, un fenómeno que se conoce como diuresis por presión, y también la eliminación de sal, que se conoce como natriuresis por presión. Igual que en el pez babosa, el sistema de líquidos renal-corporal para el control de la presión arterial en el ser humano es el mecanismo fundamental del control de la presión arterial a largo plazo, aunque a través de las etapas de la evolución se han añadido muchos sistemas de refinamiento que hacen que sea mucho más preciso en su control. Como veremos más adelante, un refinamiento especialmente importante es la adición del mecanismo renina-angiotensina.

UNIDAD IV. Capítulo 19: “Función dominante de los riñones en el ...

Se muestra el efecto medio aproximado de distintos niveles de presión arterial sobre la eliminación de volumen por orina en el riñón aislado, demostrándose un aumento importante de volumen de orina emitido a medida que aumenta la presión. Ese aumento de eliminación de orina es el fenómeno de diuresis por presión. La curva de esta figura se conoce como curva de eliminación de orina en el riñón, o curva de función renal. En el ser humano la eliminación de orina con una presión arterial de 50 mmHg es esencialmente cero. Con 100 mmHg es normal y con 200 mmHg es entre seis y ocho veces más de lo normal. Además, no solo el aumento de la presión arterial aumenta la producción de volumen de orina, sino que también provoca un aumento aproximadamente igual de la eliminación de sodio, que es el fenómeno de natriuresis por presión.

CAP. 19: FUNCIÓN DOMINANTE DE LOS RIÑONES EN EL CONTROL A LARGO ...
Aunque hasta ahora hemos resaltado la importancia del volumen en la regulación de la presión arterial, en los estudios experimentales se ha demostrado que el aumento de la ingestión de sal eleva más la presión arterial que el aumento de la ingestión de agua. El motivo de este hallazgo es que el agua pura se excreta normalmente por los riñones casi con la misma velocidad con la que se ingiere, mientras que la sal no se excreta tan fácilmente. A medida que se acumula la sal en el organismo aumenta indirectamente el volumen de líquido extracelular, por dos razones básicas: 1. Cuando hay un exceso de sal en el líquido extracelular aumenta la osmolalidad del líquido, lo que, a su vez, estimula el centro de la sed en el cerebro, haciendo que esta persona beba cantidades extra de agua para normalizar la concentración extracelular de sal, aumentando el volumen de líquido extracelular. 2. El aumento de la osmolalidad causado por el exceso de sal en el líquido extracelular también estimula el mecanismo secretor del eje hipotálamo-hipófisis posterior para segregar cantidades mayores de hormona antidiurética.
FISIOLOGÍA DE LA P.A.S. Dr. Rafael Pérez García Cardiólogo - ppt ...

En la imagen izquierda se muestran los resultados de un experimento en perros, en los que se bloquearon primero los mecanismos reflejos nerviosos de control de la presión arterial. Después se elevó bruscamente la presión arterial infundiendo 400 ml de sangre por vía intravenosa. Obsérvese el rápido aumento del gasto cardíaco hasta aproximadamente el doble de lo normal y el aumento de la presión arterial media hasta 205 mmHg, 115 mmHg por encima de su valor en reposo. En la zona media de la curva se muestra el efecto de este aumento de presión arterial sobre la eliminación de orina, que aumentó 12 veces. Junto con esta pérdida tremenda de líquidos en orina se aprecia el retorno a la normalidad del gasto cardíaco y de la presión arterial en la hora siguiente. Es decir, se ve una capacidad extrema de los riñones para eliminar el exceso de volumen de líquido del organismo en respuesta a una presión arterial alta, y al hacerlo se consigue la normalización de la presión arterial.
En la imagen derecha se muestra cómo el cambio de nivel de ingestión de sal y agua también puede cambiar la presión arterial. En este caso, el nivel de ingestión ha aumentado cuatro veces y el punto de equilibrio se ha desplazado hacia un nivel de presión de 160 mmHg, 60 mmHg por encima del nivel normal. Por el contrario, un descenso del nivel de ingestión reduciría la presión arterial. Es decir, es imposible cambiar el nivel de presión arterial media a largo plazo hasta un nuevo valor
sin modificar uno o ambos determinantes básicos de la presión arterial, es decir: 1) el nivel de ingestión de sal y agua, o 2) el grado de desplazamiento de la curva de función renal a lo largo del eje de la presión.

La importancia de las influencias neurales y hormonales en la natriuresis por presión es evidente especialmente durante los cambios crónicos en la ingestión de sodio. Si los riñones y los mecanismos nerviosos y hormonales están funcionando con normalidad, los aumentos crónicos en la ingestión de sal y agua de hasta seis veces los valores normales se asocian comúnmente con incrementos pequeños en la presión arterial. Obsérvese que el punto de equilibrio B de presión de la sangre en la curva es casi el mismo que el punto A, el punto de equilibrio para ingestión de sal normal. Por el contrario, la disminución en la ingestión de sal y agua hasta la sexta parte de lo normal suele tener un efecto pequeño en la presión arterial. Así, se dice que muchas personas son insensibles a la sal, ya que las grandes variaciones en la ingestión de sal no modifican la presión sanguínea más que unos milímetros de mercurio.

La hipertensión crónica se debe a un deterioro de la función renal Cuando se dice que una persona tiene hipertensión crónica (o «presión arterial alta»), quiere decirse que su presión arterial media es mayor que el límite superior del intervalo de las mediciones que se aceptan como normales. Una presión arterial media mayor de 110 mmHg (la normal es de 90 mmHg) se considera hipertensión. (Este nivel de presión arterial media aparece cuando la presión arterial diastólica es mayor de 90 mmHg y la presión sistólica es mayor de 135 mmHg.) En personas con hipertensión importante, la presión arterial media aumenta hasta 150-170 mmHg, con una presión diastólica hasta de 130 mmHg y una presión sistólica que, en ocasiones, puede llegar a los 250 mmHg. La elevación de la presión arterial, aunque sea moderada, acorta la esperanza de vida. Cuando la presión arterial está muy elevada, es decir, con una presión arterial media un 50% o más por encima de lo normal, la persona no vivirá más de algunos años, a no ser que se trate correctamente. Los efectos letales de la hipertensión se producen principalmente de tres formas: 1. Un exceso de la carga de trabajo sobre el corazón que produce insuficiencia cardíaca precoz y cardiopatía coronaria, provocando la muerte como consecuencia de un ataque cardíaco. 2. La hipertensión arterial daña algún vaso sanguíneo mayor del cerebro, con lo que mueren porciones importantes de ese órgano; este suceso se denomina infarto cerebral. Clínicamente, es un «ictus». Dependiendo de la parte del cerebro afectada, el ictus puede ser mortal o provocar parálisis, demencia, ceguera o muchos otros trastornos cerebrales graves. 3. La hipertensión casi siempre provoca lesiones en los riñones, produciendo muchas zonas de destrucción renal y, finalmente, insuficiencia renal, uremia y muerte.

después de que el gasto cardíaco haya aumentado hasta un nivel elevado y se haya iniciado la hipertensión, el exceso de flujo sanguíneo a través de los tejidos provoca después la constricción progresiva de las arteriolas locales, con lo que el flujo sanguíneo local de los tejidos del organismo, y también el gasto cardíaco, vuelven casi totalmente a la normalidad, mientras que se provoca simultáneamente el aumento secundario de la resistencia periférica total. Obsérvese que el volumen de líquido extracelular y el volumen de sangre también volvieron casi a la normalidad a la vez que se redujo el gasto cardíaco. Este resultado se deriva de dos factores: en primer lugar, el aumento de la resistencia arteriolar disminuyó la presión capilar, lo que permitió que el líquido de los espacios tisulares se absorbiera de nuevo hacia la sangre. En segundo lugar, la elevación de la presión arterial hace ahora que los riñones excreten el exceso de volumen de líquido que inicialmente se había acumulado en el cuerpo. Varias semanas después del inicio de la sobrecarga de volumen, con los efectos siguientes: 1. Hipertensión. 2. Importante aumento de la resistencia periférica total. 3. Normalización casi completa del volumen de líquido extracelular, volumen de sangre y gasto cardíaco. Por tanto, podemos dividir la hipertensión por sobrecarga de volumen en dos etapas secuenciales. La primera etapa es consecuencia del aumento de volumen de líquido que provoca el aumento del gasto cardíaco, el cual media en la hipertensión. La segunda etapa de la hipertensión por sobrecarga de volumen se caracteriza por una presión arterial elevada y una resistencia periférica total alta, pero con un retorno del gasto cardíaco tan cerca de lo normal que las técnicas de medición habitual no pueden detectar la elevación anormal del gasto cardíaco. Es decir, el aumento de la resistencia periférica total en la hipertensión por sobrecarga de volumen se produce después de que se haya desarrollado la hipertensión y, por tanto, es secundario a la hipertensión y no es la causa de la misma.

Rosas-Peralta

El sistema renina-angiotensina: su función en el control de la presión arterial
Además de la capacidad de los riñones de controlar la presión arterial a través de los cambios de volumen del líquido extracelular, los riñones también tienen otro mecanismo potente para controlar la presión arterial: el sistema renina-angiotensina. La renina es una enzima proteica liberada por los riñones cuando la presión arterial desciende demasiado. A su vez, eleva la presión arterial de varias formas, con lo que ayuda a corregir el descenso inicial de la presión.

FUNCIÓN DOMINANTE DE LOS RIÑONES EN EL CONTROL A LARGO PLAZO DE LA ...

La renina se sintetiza y almacena en una forma inactiva conocida como prorrenina en las células yuxtaglomerulares (células YG) de los riñones. Las células YG son miocitos lisos modificados
situados principalmente en las paredes de las arteriolas aferentes, inmediatamente proximales a los glomérulos. Cuando desciende la presión arterial se producen una serie de reacciones intrínsecas de los riñones que provocan la escisión de muchas de las moléculas de prorrenina de las células YG y la liberación de renina, la mayor parte de la cual entra en la circulación sanguínea renal para circular después por todo el organismo. No obstante, quedan pequeñas cantidades de renina en los líquidos locales del riñón que inician varias funciones intrarrenales, la renina actúa enzimáticamente sobre otra proteína plasmática, una globulina denominada sustrato de renina (o angiotensinógeno), para liberar un péptido de 10 aminoácidos, la angiotensina I, que tiene propiedades vasoconstrictoras discretas, no suficientes para provocar cambios suficientes en la función circulatoria. La renina persiste en la sangre durante 30 min hasta 1 h y continúa provocando la formación de aún más angiotensina I durante todo este tiempo. Unos segundos o minutos después de la formación de angiotensina I se escinden otros dos aminoácidos a partir de la angiotensina I para formar el péptido de ocho aminoácidos angiotensina II. Esta conversión se produce en gran medida en los pulmones, cuando el flujo sanguíneo atraviesa los pequeños vasos de ese territorio, catalizada por una enzima denominada enzima convertidora de la angiotensina, que está presente en el endotelio de los vasos pulmonares. Otros tejidos, como los riñones y los vasos sanguíneos, también contienen enzima convertidora y, por tanto, forman angiotensina II localmente. La angiotensina II es una sustancia vasoconstrictora muy potente que afecta a la función circulatoria de otras formas. No obstante, persiste en sangre solo durante 1-2 min porque se inactiva rápidamente por muchas enzimas tisulares y sanguíneas que se conocen colectivamente como angiotensinasas. La angiotensina II tiene dos efectos principales que pueden elevar la presión arterial. El primero de ellos, la vasoconstricción de muchas zonas del organismo, se produce rápidamente. La vasoconstricción es muy intensa en las arteriolas y mucho menor en las venas. La constricción de las arteriolas aumenta la resistencia periférica total, con lo que aumenta la presión arterial. Además, la constricción leve de las venas favorece el incremento del retorno de sangre venosa hacia el corazón, con lo que se facilita la función de bomba cardíaca contra una presión en aumento. La segunda forma más importante por la que la angiotensina II aumenta la presión arterial es el descenso de la excreción tanto de sal como de agua por los riñones. Esta acción aumenta lentamente el volumen del líquido extracelular, lo que después aumenta la presión arterial durante las horas y días sucesivos. Este efecto a largo plazo, que actúa a través del mecanismo de volumen del líquido extracelular, es incluso más potente que el mecanismo vasoconstrictor agudo a la hora de aumentar finalmente la presión arterial.

CAPITULO 19, UNIDAD IV – El blog de Torreblanca

Para resaltar la eficacia del sistema renina-angiotensina en el control de la presión arterial, diremos que la presión no aumenta más de 4-6 mmHg cuando el sistema funciona con normalidad en respuesta a un aumento de la ingestión de sal hasta de 100 veces.

Tipos de hipertensión en que interviene la angiotensina: hipertensión provocada por un tumor secretor de renina o por isquemia renal
En ocasiones aparece un tumor de células YG que segrega cantidades enormes de renina; a su vez, se forman cantidades igualmente enormes de angiotensina II. En todos los pacientes en los que se ha dado este fenómeno se ha desarrollado una hipertensión importante. Además, en los animales de experimentación se desarrolla una hipertensión importante similar a largo plazo cuando se infunden continuamente grandes cantidades de angiotensina II durante días o semanas. Ya hemos comentado que la angiotensina II aumenta la presión arterial por dos mecanismos: 1. Al contraer las arteriolas de todo el cuerpo, con lo que aumenta la resistencia periférica total y la presión arterial; este efecto se produce en segundos después de que comience la infusión de angiotensina. 2. Al provocar la retención renal de sal y agua; en un período de días esta acción también provoca hipertensión y es la causa principal del mantenimiento a largo plazo de la presión arterial elevada.

Hipertensión de Goldblatt con dos riñones
La hipertensión también puede aparecer cuando se produce la constricción solo de un riñón, mientras que la arteria del otro es normal. El riñón que tiene la constricción segrega renina y también retiene sal y agua por el descenso de la presión arterial renal en ese riñón. Entonces, el riñón contrario «normal» retiene sal y agua por la presencia de la renina producida por el riñón isquémico. Esta renina provoca la formación de angiotensina II y aldosterona, circulando ambas hacia el riñón contrario y haciendo que retenga sal y agua. Es decir, ambos riñones retienen sal y agua, pero por motivos diferentes. En consecuencia, se desarrolla hipertensión. La contrapartida clínica a la hipertensión de Goldblatt con dos riñones sucede cuando existe estenosis de una sola arteria renal provocada, por ejemplo, por ateroesclerosis, en una persona que tiene dos riñones.
Hipertensión causada por riñones enfermos que segregan renina crónicamente
A menudo hay zonas parcheadas enfermas en uno o ambos riñones, que se vuelven isquémicos por la constricción vascular local o infartos, mientras que otras áreas de los riñones son normales. Cuando se produce esta situación, se consiguen efectos casi idénticos a los de la hipertensión de Goldblatt con dos riñones. Es decir, el tejido renal con parches isquémicos segrega renina que, a su vez, actúa a través de la formación de angiotensina II, con lo cual la masa renal residual también retiene sal y agua. En realidad, una de las causas más frecuentes de hipertensión renal, en especial en los ancianos, es la enfermedad isquémica renal parcheada.

Otros tipos de hipertensión provocada por combinaciones de sobrecarga de volumen y vasoconstricción
Hipertensión en la parte alta del cuerpo, causada por la coartación aórtica
Uno de cada varios miles de recién nacidos tiene una constricción o bloqueo patológico de la aorta en un punto distal a las ramas que desde la aorta se dirigen hacia la cabeza y los brazos, pero proximal a las arterias renales. Esta situación se conoce como coartación aórtica. Cuando esto sucede, el flujo sanguíneo hacia la parte inferior del cuerpo se transporta a través de muchas arterias colaterales de pequeño tamaño por la pared corporal, con gran resistencia vascular entre la parte alta y la parte baja de la aorta. En consecuencia, la presión arterial en la parte alta del cuerpo puede ser hasta un 40-50% mayor que en la parte inferior. El mecanismo de esta hipertensión de la parte alta del cuerpo es casi idéntico al de la hipertensión de Goldblatt con riñón único, es decir, cuando se coloca un obstáculo constrictor en la aorta por encima de las arterias renales, la presión arterial de ambos riñones desciende primero, se segrega renina, se forman angiotensina y aldosterona y se produce la hipertensión en la parte alta del cuerpo. La presión arterial en la parte inferior del cuerpo a la altura de los riñones aumenta aproximadamente hasta la normalidad, pero la presión arterial elevada persiste en la parte alta. Los riñones ya no están isquémicos, por lo que la secreción de renina y la formación de angiotensina y aldosterona vuelven a la normalidad. Asimismo, en la coartación aórtica la presión arterial de la parte inferior del cuerpo suele ser casi normal, mientras que en la parte alta es bastante mayor de lo normal.
Función de la autorregulación en la hipertensión provocada por la coartación aórtica
Una característica significativa de la hipertensión causada por la coartación aórtica es que el flujo sanguíneo de los brazos, donde la presión puede ser un 40-60% por encima de lo normal, es casi exactamente normal. Además, el flujo sanguíneo de las piernas, donde la presión no esta elevada, también es casi exactamente normal. ¿Cómo puede ser esto, si la presión de la parte superior del cuerpo es un 40-60% mayor que en la parte inferior? La respuesta no está en las diferencias de sustancias vasoconstrictoras que hay en la sangre en la parte superior e inferior del cuerpo, ya que el flujo sanguíneo es el mismo en ambos territorios. Asimismo, el sistema nervioso inerva de forma similar ambas zonas de la circulación, por lo que no hay motivos para creer que hay diferencias en el control nervioso de los vasos sanguíneos. La razón principal es que se desarrolla una autorregulación a largo plazo, casi tan completa que los mecanismos de control del flujo sanguíneo local han compensado casi el 100% de las diferencias de presión. El resultado es que el flujo sanguíneo local se controla casi exactamente igual, de acuerdo a las necesidades del tejido y no según el nivel de presión tanto en el territorio de presión elevada como en el de presión baja.
Hipertensión en la preeclampsia (toxemia del embarazo)
Entre el 5 y el 10% aproximadamente de las mujeres gestantes desarrollan un síndrome conocido como preeclampsia (también denominado toxemia del embarazo). Una de las manifestaciones de la preeclampsia es la hipertensión, que habitualmente remite después del nacimiento del bebé. Aunque se desconocen las causas exactas de la preeclampsia, se cree que la isquemia de la placenta y la liberación consecuente de factores tóxicos por una placenta isquémica son los causantes de muchas de las manifestaciones de este trastorno, como la hipertensión de la madre. A su vez, las sustancias liberadas por la placenta isquémica provocan la disfunción de las células endoteliales vasculares de todo el cuerpo, incluidos los vasos sanguíneos de los riñones. Esta disfunción endotelial disminuye la liberación de óxido nítrico y de otras sustancias vasodilatadoras, provocando vasoconstricción,
descenso de la velocidad de filtración de líquidos desde los glomérulos hacia los túbulos renales, alteración de la natriuresis renal por presión y desarrollo de hipertensión. Otra anomalía patológica que puede contribuir a la hipertensión en la preeclampsia es el engrosamiento de las membranas glomerulares renales (quizás causado por un proceso autoinmunitario), que también reduce la velocidad de filtración glomerular de líquidos. Por razones obvias, el nivel de presión arterial renal requerido para la formación normal de orina se eleva y, en consecuencia, también se eleva la presión arterial general a largo plazo. Estos pacientes son especialmente propensos a desarrollar grados más importantes de hipertensión cuando ingieren sal en exceso.
Hipertensión neurógena
La hipertensión neurógena aguda puede deberse a una potente estimulación del sistema nervioso simpático, por ejemplo, cuando una persona se excita por cualquier motivo, o a veces en estados de ansiedad, el sistema simpático se estimula en exceso, se produce una vasoconstricción periférica en cualquier parte del cuerpo y aparece la hipertensión aguda. Otro tipo de hipertensión neurógena aguda aparece cuando se cortan los nervios procedentes de los barorreceptores o cuando se destruye el tracto solitario a cada lado del bulbo raquídeo (aquí se encuentran las zonas en las que los nervios de los barorreceptores aórticos y carotídeos se conectan con el tronco del encéfalo). La interrupción brusca de las señales nerviosas normales procedentes de los barorreceptores tiene el mismo efecto sobre los mecanismos nerviosos de control de la presión que una reducción súbita de la presión arterial en las arterias aorta y carótida. Es decir, la pérdida del efecto inhibidor normal del centro vasomotor provocada por las señales normales de los barorreceptores consigue que el centro vasomotor desarrolle súbitamente una gran actividad y la presión arterial media aumenta desde 100 hasta incluso 160 mmHg. La presión vuelve casi a la normalidad en 2 días, porque la respuesta del centro vasomotor a la ausencia de señales de los barorreceptores se va desvaneciendo, lo que se conoce como «ajuste» del control de los barorreceptores del mecanismo de presión. Por tanto, la hipertensión neurógena causada por la sección de los nervios de los barorreceptores es principalmente una hipertensión de tipo agudo y no crónica. El sistema nervioso simpático desempeña también una función importante en algunas formas de hipertensión crónica, en gran parte por la activación de los nervios simpáticos renales. Por ejemplo, una ganancia de peso excesiva y la obesidad a menudo conducen a la activación del sistema nervioso simpático, lo que a su vez estimula los nervios simpáticos renales, dificulta la natriuresis de presión renal y provoca hipertensión crónica. Estas anomalías parecen tener una función importante en un gran porcentaje de pacientes con hipertensión primaria (esencial), como se expondrá más adelante.
Causas genéticas de hipertensión
La hipertensión hereditaria espontánea se ha observado en varias razas de animales, como en diferentes razas de ratas y al menos en una raza de perros. En la raza de ratas que se ha estudiado con mayor detalle, la raza de ratas hipertensas espontáneamente de Okamoto, en la que hay signos de un desarrollo precoz de la hipertensión, el sistema nervioso simpático es considerablemente más activo que en las ratas normales. En etapas avanzadas de este tipo de hipertensión se han observado cambios estructurales en las nefronas renales: 1) aumento de la resistencia arterial renal preglomerular, y 2) descenso de la permeabilidad de las membranas glomerulares. Estos cambios estructurales también contribuyen al mantenimiento a largo plazo de la hipertensión. En otras cepas de ratas hipertensas también se ha observado el deterioro de la función renal.
En los seres humanos se han identificado distintas mutaciones génicas que pueden causar hipertensión. Estas formas de hipertensión se denominan hipertensión monogénica, ya que están provocadas por la mutación de un solo gen. Un rasgo interesante de estos trastornos genéticos es que inducen una reabsorción excesiva de sal y agua por parte de los túbulos renales. En algunos casos, el aumento de la reabsorción se debe a mutaciones génicas que aumentan directamente el transporte de sodio o cloruro en las células epiteliales de los túbulos renales. En otros casos, las mutaciones génicas provocan un aumento de la síntesis o actividad de hormonas que estimulan la reabsorción de agua y sal en los túbulos renales. Así, en todos los trastornos hipertensivos monogénicos descubiertos hasta ahora, la ruta final común hacia la hipertensión parece ser el aumento en la reabsorción de sal y la expansión del volumen del líquido extracelular. Sin embargo, la hipertensión monogénica es rara, y todas las formas conocidas suman en conjunto menos del 1% de la hipertensión humana. Hipertensión primaria (esencial) Parece que el 90-95% de todas las personas que tienen hipertensión tienen «hipertensión primaria», también conocida como «hipertensión esencial» por muchos médicos. Estos términos significan, simplemente, que la hipertensión es de origen desconocido, al contrario que las formas de hipertensión que son secundarias a causas conocidas, como la estenosis de la arteria renal o formas monogénicas de hipertensión. En la mayoría de los pacientes el aumento excesivo de peso y la vida sedentaria parecen desempeñar un papel importante en la causa de la hipertensión. La mayoría de los pacientes hipertensos tienen sobrepeso y en los estudios de distintas poblaciones parece demostrarse que un aumento de peso excesivo y la obesidad explican hasta el 65-75% del riesgo de desarrollar hipertensión primaria. En los estudios clínicos se ha demostrado claramente la importancia que tiene la pérdida de peso para reducir la presión arterial en la mayoría de los pacientes con hipertensión. De hecho, en las nuevas normas clínicas para el tratamiento de la hipertensión se recomienda aumentar la actividad física y la pérdida de peso como primer paso para el tratamiento de la mayoría de los pacientes hipertensos. Entre otras, las siguientes características de la hipertensión primaria son provocadas por el aumento de peso excesivo y por la obesidad: 1. El gasto cardíaco aumenta, en parte, por el aumento adicional del flujo sanguíneo necesario para el tejido adiposo extra. No obstante, el flujo sanguíneo en el corazón, los riñones, el aparato digestivo y el músculo esquelético también aumenta con el aumento de peso, debido al aumento de la tasa metabólica y al crecimiento de los órganos y tejidos en respuesta al aumento de las demandas metabólicas. Como la hipertensión se mantiene durante meses y años, la resistencia vascular periférica total puede estar aumentada. 2. La actividad simpática nerviosa está aumentada en los pacientes con sobrepeso, en especial en los riñones. Se desconoce la causa del aumento de la actividad simpática en personas obesas, pero en los estudios más recientes se habla de que algunas hormonas, como la leptina, que son liberadas por los adipocitos estimulan directamente varias regiones del hipotálamo, lo cual, a su vez, tiene una influencia excitadora en los centros vasomotores en el bulbo. Existen evidencias de que la sensibilidad de los barorreceptores arteriales implicados en amortiguar los aumentos en la presión arterial está disminuida en personas obesas. 3. Las concentraciones de angiotensina II y aldosterona están aumentadas en dos o tres veces en muchos pacientes obesos. Este incremento puede deberse al aumento de la estimulación nerviosa
simpática, que a su vez aumenta la liberación de renina por los riñones y, por tanto, la formación de angiotensina II, que, a su vez, estimula la secreción de aldosterona en las suprarrenales. 4. El mecanismo renal de natriuresis por presión está alterado y los riñones no excretarán cantidades adecuadas de sal y agua, a menos que la presión arterial sea alta o que la función renal pueda mejorar. Si la presión arterial media de una persona con hipertensión esencial es de 150 mmHg, la reducción aguda por métodos artificiales de la presión arterial media hasta 100 mmHg (sin alterar la función renal, excepto por el descenso de presión) provocará la anuria casi total y la persona retendrá sal y agua hasta que la presión vuelva a elevarse hasta los 150 mmHg. Sin embargo, la reducción crónica de la presión arterial con fármacos antihipertensivos eficaces no suele provocar una retención importante de sal y agua en los riñones porque este tratamiento también mejora la natriuresis renal por presión, como veremos más adelante. En los estudios experimentales con animales obesos y pacientes obesos se demuestra que el deterioro de la natriuresis renal por presión en la hipertensión de la obesidad se debe principalmente al aumento de la reabsorción tubular renal de sal y agua por el aumento de la actividad nerviosa simpática y de las concentraciones de angiotensina II y aldosterona. No obstante, si la hipertensión no se trata eficazmente también puede producirse un daño vascular en los riñones que reduciría la filtración glomerular y aumentaría la gravedad de la hipertensión. Finalmente, la hipertensión no controlada asociada a la obesidad provoca una lesión vascular importante con pérdida completa de la función renal.

Deja un comentario

Diseña un sitio como este con WordPress.com
Comenzar