Algunas células, como las células nerviosas y musculares, generan impulsos electroquímicos rápidamente cambiantes en sus membranas, y estos impulsos se utilizan para transmitir señales a través de las membranas de los nervios y de los músculos.
«Física básica de los potenciales de membrana Potenciales de membrana provocados por concentración de iones.
Diferencias a través de una membrana permeable selectiva «
La concentración de potasio es grande dentro de la membrana de una fibra nerviosa, pero muy baja fuera de esta.
A medida que lo hacen transportan cargas eléctricas positivas hacia el exterior, generando de esta manera electropositividad fuera de la membrana y electronegatividad en el interior debido a los aniones negativos que permanecen detrás y que no difunden hacia fuera con el potasio.
En la fibra nerviosa normal del mamífero la diferencia de potencial es de aproximadamente 94 mV, con negatividad en el interior de la membrana de la fibra.
«La ecuación de Nernst describe la relación del potencial de difusión con la diferencia de concentración de iones a través de una membrana «
La magnitud del potencial de Nernst viene determinada por el cociente de las concentraciones de ese ion específico en los dos lados de la membrana. Cuanto mayor es este cociente, mayor es la tendencia del ion a difundir en una dirección y, por tanto, mayor
será el potencial de Nernst necesario para impedir la difusión neta adicional. Se puede utilizar la siguiente ecuación, denominada ecuación de Nernst, para calcular el potencial de Nernst para cualquier ion univalente a la temperatura corporal normal (37 °C):
donde FEM es la fuerza electromotriz y z es la carga eléctrica del ion (p. ej., +1 para K+).
Cuando se utiliza esta fórmula habitualmente se asume que el potencial del líquido extracelular que está fuera de la membrana se mantiene a un nivel de potencial cero, y que el potencial de Nernst es el potencial que está en el interior de la membrana, el signo del potencial es positivo (+) si el ion que difunde desde el interior hacia el exterior es un ion negativo, y es negativo (–) si el ion es positivo
«La ecuación de Goldman se utiliza para calcular el potencial de difusión cuando la membrana es permeable a varios iones diferentes «
Cuando una membrana es permeable a varios iones diferentes, el potencial de difusión que se genera depende de tres factores: 1) la polaridad de la carga eléctrica de cada uno de los iones; 2) la permeabilidad de la membrana (P) a cada uno de los iones, y 3) las concentraciones (C) de los respectivos iones en el interior (i) y en el exterior (e) de la membrana.
A partir de la ecuación de Goldman se hacen evidentes varios puntos clave.
En primer lugar, los iones sodio, potasio y cloruro son los iones más importantes que participan en la generación de los potenciales de membrana en las fibras nerviosas y musculares, así como en las células neuronales del sistema nervioso.
El gradiente de concentración de cada uno de estos iones a través de la membrana ayuda a determinar el voltaje del potencial de membrana.
El grado de importancia de cada uno de los iones en la determinación del voltaje es proporcional a la permeabilidad de la membrana para ese ion particular.
un gradiente positivo de concentración iónica desde el interior de la membrana hacia el exterior produce electronegatividad en el interior de la membrana. La razón de este fenómeno es que
el exceso de iones positivos difunde hacia el exterior cuando su concentración es mayor en el interior que en el exterior. Esta difusión desplaza cargas positivas hacia el exterior, aunque deja los aniones negativos no difusibles en el interior, creando de esta manera electronegatividad en el interior, la permeabilidad de los canales de sodio y de potasio experimenta cambios rápidos durante la transmisión de un impulso nervioso, mientras que la permeabilidad de los canales de cloruro no se modifica mucho durante este proceso.
«MEDICION DEL POTENCIAL DE MEMBRANA»
La pipeta se inserta en la membrana celular hasta el interior de la fibra. Después se coloca otro electrodo, denominado «electrodo indiferente», en el líquido extracelular, y se mide la diferencia de potencial entre el interior y exterior de la fibra utilizando un voltímetro adecuado.

membrana.
«POTENCIAL DE MEMBRANA EN REPOSO»
El potencial de membrana en reposo de las fibras nerviosas grandes cuando no transmiten señales nerviosas es de aproximadamente –90 mV. Es decir, el potencial en el interior de la fibra es 90 mV más negativo que el potencial del líquido extracelular que está en el exterior de la misma.
«Transporte activo de los iones sodio y potasio a través de la membrana: la bomba sodio-potasio (Na+-K+) «
Todas las membranas celulares del cuerpo tienen una potente bomba Na+-K+ que transporta continuamente iones sodio hacia el exterior de la célula e iones potasio hacia el interior.

«Origen del potencial de membrana en reposo normal«

«Contribución de la difusión de sodio a través de la membrana nerviosa «
El cociente de los iones sodio desde el interior hasta el exterior de la membrana es de 0,1, lo que da un potencial de Nernst calculado para el interior de la membrana de +61 mV.
«Contribución de la bomba Na+-K+ «
El bombeo de más iones sodio hacia el exterior que el de iones potasio hacia el interior da lugar a una pérdida continua de cargas positivas desde el interior de la membrana para generar un grado adicional de negatividad (aproximadamente –4 mV más) en el interior además del que se puede explicar por la difusión de manera aislada.
«Potencial de acción de las neuronas«
Las señales nerviosas se transmiten mediante potenciales de acción que son cambios rápidos del potencial de membrana que se extienden rápidamente a lo largo de la membrana de la fibra nerviosa. Cada potencial de acción comienza con un cambio súbito desde el potencial de membrana negativo en reposo normal hasta un potencial positivo y termina con un cambio casi igual de rápido de nuevo hacia el potencial negativo. Para conducir una señal nerviosa el potencial de acción se desplaza a lo largo de la fibra nerviosa hasta que llega a su extremo.
«Fase de reposo«
La fase de reposo es el potencial de membrana en reposo antes del comienzo del potencial de acción. Se dice que la membrana está «polarizada» durante esta fase debido al potencial de membrana negativo de –90 mV que está presente.
«Fase de despolarización «
En este momento la membrana se hace súbitamente muy permeable a los iones sodio, lo que permite que un gran número de iones sodio con carga positiva difunda hacia el interior del axón. El estado «polarizado» normal de –90 mV se neutraliza inmediatamente por la entrada de iones sodio cargados positivamente.
«Fase de repolarización»
En un plazo de algunas diezmilésimas de segundo después de que la membrana se haya hecho muy permeable a los iones sodio, los canales de sodio comienzan a cerrarse y los canales de potasio se abren más de lo normal. De esta manera, la rápida difusión de los iones potasio hacia el exterior restablece el potencial de membrana en reposo negativo normal, que se denomina repolarización de la membrana.
«Activación e inactivación del canal de sodio activado por el voltaje»
Este canal tiene dos compuertas, una cerca del exterior del canal, denominada compuerta de activación, y otra cerca del interior, denominada compuerta de inactivación.
«Activación del canal de sodio «
Cuando el potencial de membrana se hace menos negativo que durante el estado de reposo, aumentando desde –90 mV hacia cero, finalmente alcanza un voltaje (habitualmente algún punto entre –70 y –50 mV) que produce un cambio conformacional súbito en la activación de la compuerta, que bascula totalmente hasta la posición de abierta.
Inactivación del canal de sodio
La parte superior derecha de la figura 5-7 muestra un tercer estado del canal de sodio. El mismo aumento de voltaje que abre la compuerta de activación también cierra la compuerta de inactivación. Sin embargo, la compuerta de inactivación se cierra algunas diezmilésimas de segundo después de que se abra la compuerta de activación.
Canal de potasio activado por el voltaje y su activación
Durante el estado de reposo (izquierda) y hacia el final del potencial de acción (derecha). Durante el estado de reposo la compuerta del canal de potasio está cerrada, lo que impide que los iones potasio pasen a través de este canal hacia el exterior. Cuando el potencial de membrana aumenta desde – 90 mV hacia cero, este voltaje produce una apertura conformacional de la compuerta y permite el aumento de la difusión de potasio hacia fuera a través del canal.
«Método de la «pinza de voltaje» para medir el efecto del voltaje sobre la apertura y el cierre de los canales activados por el voltaje .«
Uno de estos electrodos sirve para medir el voltaje del potencial de membrana y el otro para conducir corriente eléctrica hacia el interior o el exterior de la fibra nerviosa. Este aparato se utiliza de la siguiente forma: el investigador decide qué voltaje se establecerá en el interior de la fibra nerviosa. Después se ajusta la porción electrónica del aparato al voltaje deseado y se inyecta automáticamente electricidad positiva o negativa a través del electrodo de corriente a la velocidad necesaria para mantener el voltaje, que se mide con el electrodo de voltaje, al nivel que ha establecido el operador. Cuando se aumenta súbitamente este potencial de membrana con esta pinza de voltaje desde –90 mV a cero se abren los canales de sodio y potasio activados por el voltaje, y los iones sodio y potasio comienzan a pasar a través de los canales.
Funciones de otros iones durante el potencial de acción.
Hasta ahora hemos considerado solo la función de los iones sodio y potasio en la generación del potencial de acción. Se deben considerar al menos otros dos tipos de iones: los aniones negativos y los iones calcio.
«Iones con carga negativa (aniones) no difusibles en el interior del axón nervioso«
En el interior del axón hay muchos iones de carga negativa que no pueden atravesar los canales de la membrana. Incluyen los aniones de las moléculas proteicas y de muchos compuestos de fosfato orgánicos, compuestos de sulfato y similares.
Iones calcio.
Las membranas de casi todas las células del cuerpo tienen una bomba de calcio similar a la bomba de sodio, y el calcio coopera con el sodio (o actúa en su lugar) en algunas células para producir la mayor parte del potencial de acción. Al igual que la bomba de sodio, la bomba de potasio transporta iones calcio desde el interior hacia el exterior de la membrana celular.
Un ciclo de retroalimentación positiva abre los canales de sodio
Primero, siempre que no haya alteraciones de la membrana de la fibra nerviosa, no se produce ningún potencial de acción en el nervio normal. Sin embargo, si algún episodio produce una elevación suficiente del potencial de membrana desde –90 mV hacia el nivel cero, el propio aumento del voltaje hace que empiecen a abrirse muchos canales de sodio activados por el voltaje.
Umbral para el inicio del potencial de acción
No se producirá un potencial de acción hasta que el aumento inicial del potencial de membrana sea lo suficientemente grande como para dar origen al ciclo de retroalimentación positiva .
PROLONGACION DEL POTENCIAL.
un potencial de acción que se desencadena en cualquier punto de una membrana excitable habitualmente excita porciones adyacentes de la membrana, dando lugar a la propagación del potencial de acción a lo largo de la membrana.

Principio del todo o nada.
Una vez que se ha originado un potencial de acción en cualquier punto de la membrana de una fibra normal, el proceso de despolarización viaja por toda la membrana si las condiciones son las adecuadas, o no viaja en absoluto si no lo son. Este principio se denomina principio del todo o nada y se aplica a todos los tejidos excitables normales.
Cuando se produce esta situación se interrumpe la diseminación de la despolarización, para que se produzca la propagación continuada de un impulso, el cociente del potencial de acción respecto al umbral de excitación debe ser mayor de 1 en todo momento. Este requisito que debe ser mayor a 1 se denomina factor de seguridad para la propagación.
«Restablecimiento de los gradientes iónicos de sodio y potasio tras completarse los potenciales de acción: la importancia del metabolismo de la energía»
La propagación de cada potencial de acción a lo largo de una fibra nerviosa reduce ligeramente las diferencias de concentración de sodio y de potasio en el interior y en el exterior de la membrana, porque los iones sodio difunden hacia el interior durante la despolarización y los iones potasio difunden hacia el exterior durante la repolarización.
Una característica especial de la bomba Na+-K+-adenosina trifosfatasa es que su grado de actividad se estimula mucho cuando se acumula un exceso de iones sodio en el interior de la membrana celular.
Meseta en algunos potenciales de acción.
La causa de la meseta es una combinación de varios factores. En primer lugar, en el proceso de despolarización del músculo cardíaco participan dos tipos de canales: 1) los canales de sodio habituales activados por el voltaje, denominados canales rápidos
2) los canales de calcio-sodio activados por el voltaje canales de calcio de tipo L, que tienen una apertura lenta y que, por tanto, se denominan canales lentos. La apertura de los canales rápidos origina la porción en espiga del potencial de acción, mientras que la apertura prolongada de los canales lentos de calcio-sodio principalmente permite la entrada de iones calcio en la fibra, lo que es responsable en buena medida de la porción de meseta del potencial de acción.

Ritmicidad de algunos tejidos excitables: descarga repetitiva.
Las descargas repetitivas autoinducidas aparecen normalmente en el corazón, en la mayor parte del músculo liso y en muchas neuronas del sistema nervioso central. Estas descargas rítmicas producen:
1) el latido rítmico del corazón;
2) el peristaltismo rítmico de los intestinos
3) fenómenos neuronales, como el control rítmico de la respiración.
Proceso de reexcitación necesario para la ritmicidad espontánea.
Para que se produzca ritmicidad espontánea la membrana, incluso en su estado natural, debe ser lo suficientemente permeable a los iones sodio.
Características especiales de la transmisión de señales en los troncos nerviosos .
(FIBRAS NERVIOSAS MIELINIZADAS Y NO MIELINIZADAS)
Las fibras grandes son mielinizadas y las pequeñas no mielinizadas, un tronco nervioso medio contiene aproximadamente el doble de fibras no mielinizadas que mielinizadas.

El núcleo central de la fibra es el axón, y la membrana del axón es la membrana que realmente conduce el potencial de acción. El axón contiene en su centro el axoplasma, que es un líquido intracelular viscoso. Alrededor del axón hay una vaina de
mielina que con frecuencia es mucho más gruesa que el propio axón. Aproximadamente una vez cada 1 a 3 mm a lo largo de la vaina de mielina hay un nódulo de Ranvier.
Las células de Schwann depositan la vaina de mielina alrededor del axón de la siguiente manera: en
primer lugar, la membrana de una célula de Schwann rodea el axón.
Conducción «saltatoria» en las fibras mielinizadas de un nódulo a otro
Aunque los iones apenas pueden fluir a través de las gruesas vainas de mielina de los nervios mielinizados, sí lo hacen fácilmente a través de los nódulos de Ranvier, los potenciales de acción se conducen desde un nódulo a otro a esto se denomina conducción saltatoria, es decir, la corriente eléctrica fluye por el líquido extracelular circundante que está fuera de la vaina de mielina, así como por el axoplasma del interior del axón, de un nódulo a otro, excitando nódulos sucesivos uno después de otro.
La conducción saltatoria es útil por dos motivos. Primero, al hacer que el proceso de despolarización salte intervalos largos a lo largo del eje de la fibra nerviosa, este mecanismo aumenta la velocidad de la transmisión nerviosa en las fibras mielinizadas hasta 5 a 50 veces. Segundo, la conducción saltatoria conserva la energía para el axón porque solo se despolarizan los nódulos, permitiendo una pérdida de iones tal vez 100 veces menor de lo que sería necesario de otra manera, y
por tanto precisa poco gasto de energía para restablecer las diferencias de concentración de sodio y de potasio a través de la membrana después de una serie de impulsos nerviosos.
La velocidad de conducción del potencial de acción en las fibras nerviosas varía desde tan solo 0,25 m/s en las fibras no mielinizadas pequeñas hasta 100 m/s .
Excitación: el proceso de generación del potencial de acción La conducción saltatoria es útil por dos motivos. Primero, al hacer que el proceso de despolarización salte intervalos largos a lo largo del eje de la fibra nerviosa, este mecanismo aumenta la velocidad de la transmisión nerviosa en las fibras mielinizadas hasta 5 a 50 veces. Segundo, la conducción saltatoria conserva la energía para el axón porque solo se despolarizan los nódulos, permitiendo una pérdida de iones tal vez 100 veces menor de lo que sería necesario de otra manera, y
por tanto precisa poco gasto de energía para restablecer las diferencias de concentración de sodio y de potasio a través de la membrana después de una serie de impulsos nerviosos.
La velocidad de conducción del potencial de acción en las fibras nerviosas varía desde tan solo 0,25 m/s en las fibras no mielinizadas pequeñas hasta 100 m/s .
EXITACION: EL PROCESO DE GENERACION DE POTENCIAL DE ACCION.
cualquier factor que haga que los iones sodio comiencen a difundir hacia el interior a través de la membrana en un número suficiente puede desencadenar la apertura regenerativa automática de los canales de sodio. Esta apertura regenerativa automática se puede deber a un trastorno mecánico de la membrana, a los efectos químicos sobre la membrana o al paso de electricidad a través de la membrana.La conducción saltatoria es útil por dos motivos. Primero, al hacer que el proceso de despolarización salte intervalos largos a lo largo del eje de la fibra nerviosa, este mecanismo aumenta la velocidad de la transmisión nerviosa en las fibras mielinizadas hasta 5 a 50 veces. Segundo, la conducción saltatoria conserva la energía para el axón porque solo se despolarizan los nódulos, permitiendo una pérdida de iones tal vez 100 veces menor de lo que sería necesario de otra manera, y
por tanto precisa poco gasto de energía para restablecer las diferencias de concentración de sodio y de potasio a través de la membrana después de una serie de impulsos nerviosos.
La velocidad de conducción del potencial de acción en las fibras nerviosas varía desde tan solo 0,25 m/s en las fibras no mielinizadas pequeñas hasta 100 m/s .
Excitación: el proceso de generación del potencial de acción La conducción saltatoria es útil por dos motivos. Primero, al hacer que el proceso de despolarización salte intervalos largos a lo largo del eje de la fibra nerviosa, este mecanismo aumenta la velocidad de la transmisión nerviosa en las fibras mielinizadas hasta 5 a 50 veces. Segundo, la conducción saltatoria conserva la energía para el axón porque solo se despolarizan los nódulos, permitiendo una pérdida de iones tal vez 100 veces menor de lo que sería necesario de otra manera, y
por tanto precisa poco gasto de energía para restablecer las diferencias de concentración de sodio y de potasio a través de la membrana después de una serie de impulsos nerviosos.
La velocidad de conducción del potencial de acción en las fibras nerviosas varía desde tan solo 0,25 m/s en las fibras no mielinizadas pequeñas hasta 100 m/s .
EXITACION: EL PROCESO DE GENERACION DE POTENCIAL DE ACCION.
Cualquier factor que haga que los iones sodio comiencen a difundir hacia el interior a través de la membrana en un número suficiente puede desencadenar la apertura regenerativa automática de los canales de sodio. Esta apertura regenerativa automática se puede deber a un trastorno mecánico de la membrana, a los efectos químicos sobre la membrana o al paso de electricidad a través de la membrana.
Todos estos enfoques se utilizan en diferentes puntos del cuerpo para generar potenciales de acción nerviosos o musculares: presión nerviosa para excitar las terminaciones nerviosas sensitivas de la piel, neurotransmisores químicos para transmitir señales desde una neurona a la siguiente en el cerebro y una corriente eléctrica para transmitir señales entre células musculares sucesivas del corazón y del intestino.
El método habitual para excitar un nervio o un músculo en el laboratorio experimental es aplicar electricidad a la superficie del nervio del músculo mediante dos electrodos pequeños, uno de los cuales tiene carga negativa y el otro positiva.
Este efecto se produce por el motivo siguiente: recuérdese que el potencial de acción se inicia por la apertura de canales de sodio activados por el voltaje.
En el electrodo positivo la inyección de cargas positivas sobre el exterior de la membrana nerviosa aumenta la diferencia de voltaje a través de la membrana en lugar de reducirla. Este efecto produce un estado de hiperpolarización, que realmente reduce la excitabilidad de la fibra en lugar de producir un potencial de acción.
Un estímulo eléctrico negativo débil puede no ser capaz de excitar una fibra. Sin embargo, cuando aumenta el voltaje del estímulo se llega a un punto en el que se produce la excitación, un estímulo muy débil en el punto A hace que el potencial de la membrana cambie desde – 90 a –85 mV, aunque este cambio no es suficiente para que se produzcan los procesos regenerativos automáticos del potencial de acción.

Inhibición de la excitabilidad: «estabilizadores» y anestésicos locales
Al contrario de los factores que aumentan la estabilidad nerviosa, otros factores, denominados factores estabilizadores de la membrana, pueden reducir la excitabilidad. Por ejemplo, una concentración elevada de calcio en el líquido extracelular reduce la permeabilidad de la membrana a los iones sodio y reduce simultáneamente la excitabilidad. Por tanto, se dice que el ion calcio es un «estabilizador».
Anestésicos locales
Entre los estabilizadores más importantes están las muchas sustancias que se utilizan en clínica como anestésicos locales, como procaína y tetracaína.





















